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Abstract. In this pap er the authors presen t the UPC sp eak er

diarization system for the NIST Ric h T ranscription Ev aluation (R T07s)

[1 ] conducted on the conference en vironmen t. The presen ted system is

based on the ICSI R T06s system, whic h emplo ys agglomerativ e clustering

with a mo di�ed Ba y esian Criterion (BIC) measure to decide whic h

pairs of clusters to merge and to determine when to stop merging

clusters [2 ]. This is the �rst participation of the UPC in the R T Sp eak er

Diarization Ev aluation and the purp ose of this w ork has b een the

consolidation of a baseline system whic h can b e used in the future

for further researc h in the �eld of diarization. W e ha v e in tro duced,

as prior mo dules b efore the diarization system, an Sp eec h/Non-Sp eec h

detection mo dule based on a Supp ort V ector Mac hine from UPC and

a Wiener Filtering from an implemen tation of the QIO fron t-end. In

the sp eec h parameterization a F requency Filtering (FF) of the �lter-

bank energies is applied instead the classical Discrete Cosine T ransform

in the Mel-Cepstrum analysis. In addition, it is in tro duced a small

c hanges in the complexit y selection algorithm and a new p ost-pro cessing

tec hnique whic h pro cess the shortest clusters at the end of eac h Viterbi

segmen tation.

1 In tro duction

Audio segmen tation, sometimes referred to as acoustic c hange detection, consists

of exploring an audio �le to �nd acoustically homogeneous segmen ts, detecting

an y c hange of sp eak er, bac kground or c hannel conditions. It is a pattern

recognition problem, since it striv es to �nd the most lik ely categorization of

a sequence of acoustic observ ations. Audio segmen tation b ecomes useful as a

prepro cessing step in order to transcrib e the sp eec h con ten t in broadcast news

and meetings, b ecause regions of di�eren t nature can b e handled in a di�eren t

w a y .

There are t w o basic approac hes to this problem: (1) mo del-b ase d

segmen tation [3], whic h estimates di�eren t acoustic mo dels for a closed set of

acoustic classes (e.g. noise, m usic, sp eec h, etc.) and classi�es the audio stream b y
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�nding the most lik ely sequence of mo dels; and (2) metric-b ase d segmen tation

[4], whic h de�nes some metric to compare the sp ectral statistics at b oth sides

of successiv e p oin ts of the audio signal, and h yp othesizes those b oundaries

whose metric v alues exceed a giv en threshold. The �rst approac h requires

the a v ailabilit y of enough training data to estimate the mo dels of acoustic

classes and do es not generalize to unseen conditions. The second approac h,

sometimes referred as blind (unsup ervised) segmen tation, do es not su�er from

these limitations, but its p erformance dep ends highly on the metric and the

threshold. V arious metrics ha v e b een prop osed in the literature. The most cited

are the Gener alize d Likeliho o d R atio (GLR) [5] and the Bayesian Information

Criterion (BIC) [4].

The Diarization task assume no prior kno wledge ab out the sp eak ers or ho w

man y p eople participate in the meeting. In order to get acquain ted with the

problem, the data and the ev aluation metho dology , w e ha v e tak en as a baseline

a simpli�ed v ersion of the In ternational Computer Science Institute (ICSI) R T06s

system as presen ted in [2 ]. Our submission still uses the m ulti-c hannel and

agglomerativ e clustering capabilities from ICSI's soft w are while using our o wn

Sp eec h A ctivit y Detection (SAD) algorithm, parameterization and a v oiding the

use of sev eral algorithms in order to mak e the system more ligh t w eigh t. Hence

w e ha v e used an approac h whic h p erforms the clustering through a mo di�ed BIC

measure to decide whic h pairs of clusters to merge and to determine when to

stop merging clusters, as in [2].

In addition, some no v elties to the diarization system are studied. The

use of the F requency Filtering (FF) parameters instead the classical Mel

F requency Cepstral Co e�cien ts (MF CCs) has b een in tro duced in the sp eec h

parameterization. Other of them, a p ost-pro cessing mo dule is applied after eac h

Viterbi deco ding. It lo oks for orphan sp eak er segmen ts with small duration

and splits them b et w een the adjacen t segmen ts. Other new feature is a small

mo di�cation to the cluster complexit y algorithm. It a v oids the creation of v ery

small clusters, whic h do not alter the real system outcome greatly but do p ose

a burden on execution time.

The follo wing sections giv e a brief o v erview of the diarization system fo cusing

in the no v elties in tro duced. Finally , the results section pro vides the Diarization

Error (DER) obtained b y the system in the NIST R T07S Ev aluation and some

commen ts.

2 System description

The input signal from eac h one of the m ultiple distan t microphones (mdm)

c hannels, if they are a v ailable, is �rst Wiener �ltered using the implemen tation

from the QIO fron t-end [6]. These c hannels are then fed in to the Beamforming

co de implemen ted b y ICSI [7] in order to obtain a single enhanced c hannel to

b e further pro cessed. Suc h output c hannel is analyzed b y the Sp eec h A ctivit y

Detector (SAD) from UPC [8] in order to obtain the Sp eec h segmen ts to b e fed

in to the clustering algorithm. The Non-Sp eec h segmen ts are ignored from further
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pro cessing. The enhanced sp eec h data is parameterized using 30 F requency

Filtering (FF) features as describ ed in [9 ] and fed in to an ev olution of ICSI's

sp eak er agglomerativ e clustering system [2 ].

Fig. 1. Brief scheme of the UPC implementation of the R T'07 diarization system

2.1 Wiener Filtering

W e used the noise reduction implemen tation from the QIO fron t-end [6]. The

Wiener �lter noise reduction tec hnique w as applied on eac h c hannel input

w a v eform. That dep ends on a noise estimate made o v er frames judged to b e

Non-Sp eec h. Despite the SAD used in the next stages of the diarization system,

in this phase w e used the pro cedure from the QIO fron t-end: The noise estimate

is initialized from the b eginning of eac h utterance, assuming eac h sen tence starts

with a p erio d of Non-Sp eec h, and up dated using later frames of the utterance

decided to b e Non-Sp eec h based on an energy threshold.

2.2 A coustic Beamforming

The Dela y-and-Sum (D&S) tec hnique [10 ] is one of the simplest b eamforming

tec hniques but still giv es a v ery go o d p erformance. It is based on the fact that

applying di�eren t phase w eigh ts to the input c hannels the main lob e of the

directivit y pattern can b e steered to a desired lo cation, where the acoustic input

comes from. It di�ers from the simpler D&S b eamformer in that an indep enden t

w eigh t is applied to eac h of the c hannels b efore summing them. The principle of

op eration of D&S can b e seen in Figure 2.

If w e assume the distance b et w een the sp eec h source and the microphones is

enough far w e can h yp othesize that the sp eec h w a v e arriving to eac h microphone

is �at. Therefore, the di�erence b et w een the input signals, only taking in to

accoun t the w a v e path and without tak e care ab out c hannel distortion, is a

time dela y of arriv al due the di�eren t p ositions of the microphones with regard

to the source. So if w e estimate the time � , see Figure 2, w e could sync hronize

t w o di�eren t input signal in order to enhance the sp eak er information and reduce

the additiv e white noise.

Hence giv en the signals captured b y N microphones, x i [n] with i = 0 : : : N � 1
(where n indicates time steps) if w e kno w their individual relativ e dela ys d(0; i )
(called Time Dela y of Arriv al, TDO A) with resp ect to a common reference

microphone x0 , w e can obtain the enhanced signal using Equation (1).

y(n) = x0[n] +
N � 1X

i =1

Wi x i [n � d(0; i )] (1)
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Fig. 2. Filter and Sum algorithm blo ck diagr am

The same tec hnique is applied in b oth training and testing sp eec h leading to

matc hed conditions in the iden ti�cation. By adding together the aligned signals

the usable sp eec h adds together and the am bien t noise (assuming it is random

and has a similar probabilit y function) will b e reduced. Using D&S, according to

[10 ], w e can obtain up to a 3dB SNR impro v emen t eac h time that w e double the

n um b er of microphones. In order to estimate the TDO A b et w een t w o segmen ts

from t w o microphones w e used the generalised cross correlation with phase

transform (GCC-PHA T) metho d [11 ]. Giv en t w o signals x i (n) and x j (n) the

GCC-PHA T is de�ned as:

ĜP HAT ij (f ) =
X i (f )

�
X j (f )

� �

�
�X i (f )

�
X j (f )

� � �
� (2)

where X i (f ) and X j (f ) are the F ourier transforms of the t w o signals and []�

denotes the complex conjugate. The TDO A for t w o microphones is estimated

as:

d̂P HAT ij = arg max
d

R̂P HAT (dij ) (3)

where R̂P HAT ij (d) is the in v erse F ourier transform of ĜP HAT ij (f ) , the

F ourier T ransform of the estimated cross correlation phase. The maxim um v alue

of R̂P HAT ij (d) corresp onds to the estimated TDO A.

In this w ork w e ha v e estimated the TDO A v alue using a windo w of 500 ms. at

rate of 250 ms. applied on the wiener �ltered c hannels. During the dev elopmen t

some exp erimen ts w ere p erformed with di�eren t sizes and shifts of windo w, but
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w e did not �nd an y impro v emen t in the o v erall DER error. The w eigh ting factor

W applied to eac h microphone is computed dep ending the cross correlation

b et w een eac h c hannel and the reference c hannel.

2.3 SVM-based Sp eec h A ctivit y Detection

The SAD mo dule used in this w ork is based on SVM classi�er [12 ]. The dev elop ed

system sho w ed a go o d p erformance in the last R T SAD Ev aluations [8], hence

w e ha v e c hosen this SAD implemen tation due to the fact it is adapted to NIST

metric ab out sp eec h activit y detection since it p enalizes more the Sp eec h class

than the Non-Sp eec h class.

The usual training algorithm of the SVM classi�er w as enhanced in order to

cop e with that problem of dataset reduction, prop osing a fast algorithm based on

Pro ximal SVM (PSVM). Besides that, the SVM learning pro cess w as adjusted

in order to tak e in to accoun t the sp eci�c c haracteristics of the metric used in the

NIST Ric h T ranscription (R T) ev aluations. The resulting SVM SAD system w as

tested with the R T06 data and it sho w ed b etter scores than the GMM-based

system whic h rank ed among the b est systems in the R T06 ev aluation [8].

A set of sev eral h undred of thousand of examples is a usual amoun t of data

for classical audio and sp eec h pro cessing tec hniques that in v olv e GMM. Ho w ev er,

it is an enormous n um b er of feature v ectors to b e used for a usual SVM training

pro cess and hardly mak es suc h training feasible in practice. Alternativ e metho ds

should b e e�ectiv ely applied to reduce the amoun t of data.

Pro ximal Supp ort V ector Mac hine (PSVM) has b een recen tly in tro duced in

[13 ] as a result of the substitution of the inequalit y constrain t of a classical SVM

yi (wx i + b) � 1 b y the equalit y constrain t yi (wx i + b) = 1 , where yi stands for a

lab el of a v ector x i , w is the norm of the separating h yp erplane H0 , and b is the

scalar bias of the h yp erplane H0 . This simple mo di�cation signi�can tly c hanges

the nature of the optimization problem. Unlik e con v en tional SVM, PSVM solv es

a single square system of linear equations and th us it is v ery fast to train. As a

consequence, it turns out that it is p ossible to obtain an explicit exact solution

to the optimization problem [13 ].

Figure 3 sho ws a geometrical in terpretation of the c hange. H � 1 and H1 planes

do not b ound the negativ ely- and the p ositiv ely-lab eled data an ymore, but can

b e view ed as pr oximal planes around whic h the p oin ts of eac h class are clustered

and b et w een whic h the separating h yp erplane H0 lies. In the nonlinear case of

PSVM (w e use a Gaussian k ernel) the concept of Supp ort V ectors (SV s) (Figure

3, in gra y) disapp ears as the separating h yp erplane dep ends on all data. In that

w a y , all training data m ust b e preserv ed for the testing stage.

The prop osed algorithm of dataset reduction consists of the follo wing steps:

� Step 1. Divide all the data in to c h unks of 1000 samples p er c h unk

� Step 2. T rain a PSVM on eac h c h unk p erforming 5-fold cross-v alidation (CV)

to obtain the optimal k ernel parameter and the C parameter that con trols

the training error
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Fig. 3. Pr oximal Supp ort V e ctor Machine b ase d SVM.

� Step 3. Apply an appropriate threshold to select a pre-de�ned n um b er of

c h unks with the highest CV accuracy

� Step4. T rain a classical SVM on the amoun t of data selected in Step 3

The prop osed approac h is in fact similar to V ector Quan tization (V Q) used

for dataset reduction for SVM in [14 ]. With Step 2 some kind of clustering

is p erformed, and Step 3 c ho oses the data that corresp onds to the most

separable clusters. Ho w ev er, unlik e V Q, SV s, whic h are obtained with the

prop osed algorithm in Step 4, are tak en from the initial data. Besides, additional

homogeneit y is ac hiev ed b ecause the PSVM data clustering is p erformed in the

transformed feature spaces with the transformation functions that corresp ond

to the Gaussian k ernel and the same k ernel t yp e is applied to the c hosen data

in Step 4.

The second mo di�cation mak es use of the kno wledge of the sp eci�c NIST

metric during the training phase. The NIST metric dep ends strongly on the

prior distribution of Sp eec h and Non-Sp eec h in the test database. F or example,

a system that ac hiev es a 5% error rate at Sp eec h p ortions and a 5% error rate

at Non-Sp eec h p ortions, w ould result in v ery di�eren t NIST error rates for test

databases with di�eren t prop ortion of Sp eec h and Non-Sp eec h segmen ts; in the

case of 90-to- 10% ratio of Sp eec h-to-Non-Sp eec h the NIST error rate is 5:6%,

while in the case of 50-to- 50% ratio it is 10%. F or this reason, if w e w an t to

impro v e the NIST scores w e should p enalize the errors from the Sp eec h class

more than those from the Non-Sp eec h class. That is p ossible for a discriminativ e

classi�er as SVM in the training stage b y in tro ducing di�eren t costs for the t w o

classes through the di�eren t generalization parameters C� and C+ . In that w a y ,

the separating h yp erplane H0 will no longer lie exactly in the middle of the H � 1

and H1 h yp erplane (Figure 3). It is w orth to men tion that fa v ouring a class

in the testing stage (after the classi�er is trained) could still b e done for SVM

through the bias b of the separating h yp erplane.
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2.4 Sp eec h P arameterization

The sp eec h parameterization is based on a short-term estimation of the sp ectrum

energy in sev eral sub-bands. The b eamformed c hannel w as analyzed in frames of

30 milliseconds at in terv als of 10 milliseconds and 16 kHz of sampling frequency .

Eac h frame windo w is pro cessed subtracting the mean amplitude from eac h

sample. A Hamming windo w w as applied to eac h frame and a FFT computed.

The FFT amplitudes w ere then a v eraged in 30 o v erlapp ed triangular �lters, with

cen tral frequencies and bandwidths de�ned according to the Mel scale.

The squeme w e presen t follo w the classical pro cedure used to obtain the Mel-

F requency Cepstral Co e�cien ts (MF CC), ho w ev er in this approac h, instead of

the using Discrete Cosine T ransform, suc h as in the MF CC pro cedure [15 ] log

�lter.bank energies are �ltered b y a linear and second order �lter. This tec hnique

w as called F requency Filtering (FF) [9 ]. The �lter H (z) = z� z� 1
ha v e b een used

in this w ork and it's applied o v er the log of the �lter-bank energies. The shap e

of this �lter allo w a b est classi�cation due it emphasizes regions of the sp ectrum

with high sp eak er information yielding more discriminativ e information. This

parameters ha v e sho w a go o d results in the last CLEAR Ev aluation Campaign

in the acoustic p erson iden ti�cation task [16 ].

A total of 30 FF co e�cien ts had used in this w ork and no � or � � �
parameters. The c hoice of this kind of parameters is based on the fact that

the using of the FF instead the classic MF CC has sho wn the b est results

in b oth sp eec h and sp eak er recognition [17 ]. This features ha v e sho wn b oth

computational e�ciency and robustness against noise than the MF CC. In

addition, regarding in the frequency domain imply they ha v e frequency meaning

whic h p ermits the use of frequency tec hniques as masking, noise subtraction,

etc. W e can �nd other in teresting c haracteristics suc h as they are uncorrelated,

computationally simpler than MF CCs and it do es not decrease clean sp eec h

recognition results [18 ]. Summarizing, the FF �lter can b e seen as a liftering

op eration p erformed in the sp ectral domain equalizing the v ariance of cepstral

co e�cien ts.

2.5 Impro v emen ts in agglomerativ e clustering

Thequeme w e presen t follo w the classical pro cedure used to obtain the Mel-

F requency Cepstral Co e�cien ts (MF CC), ho w ev er in this approac h, instead

approac h is based on a iterativ e segmen tation b y an ergo dic Hidden Mark o v

Mo del (HMM), whic h mo dels the acoustic data and their temp oral ev olution.

The system starts with a homogeneous splitting of the data among an initial

n um b er of cluster equal to the initial n um b er of states. Next the Viterbi deco ding,

it merges the pair of cluster more acoustically similar b y a mo di�ed v ersion of

BIC [19 ]. The BIC measure also handles the stop criterion whic h o ccurs if the

remaining clusters are b elo w a threshold in the lik eliho o d function. In the end-

iteration eac h remaining state is tak en to represen t a di�eren t sp eak er.

Changes to the diarization system from ICSI are orien ted to w ards decreasing

the run time of the system while main taining as m uc h as p ossible the p erformance
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from the original. F or instance, in this v ersion it do es not use dela ys as features,

do es not p erform an y kind of puri�cation to the clusters and uses linear

initialization b y splitting ev enly all data among the n um b er of determined initial

clusters.

In addition, no v elties to the diarization system are a p ost-pro cessing mo dule

that lo oks for orphan sp eak er segmen ts with small duration and splits them

b et w een b oth adjacen t segmen ts and a small mo di�cation to the cluster

complexit y algorithm to a v oid the creation of v ery small clusters, whic h do not

alter the real system outcome greatly but do p ose a burden on execution time.

The cluster complexit y mo di�cation allo w drop o� small clusters whic h are

mo delled b y a few Gaussians. The class pruned do es not tak e part in the follo wing

segmen tations and after the next segmen tation step its data is splitted among

the remaining classes.

A t the end of eac h segmen tation, the �nal p ost-pro cessing of the b oundaries

analyzes whose shortest segmen ts normally asso ciated to false alarms in this

kind of trac king implemen tation. All those segmen ts with duration small than

1:1*MD (Minim um Duration) are pro cessed through a sliding windo w. F rom the

pre-b oundary up to the p ost-b oundary all data inside the windo w are ev aluated

using the mo del of the previous, curren t and p osterior cluster and the new

b oundary is c hosen dep ending the maxim um computed lik eliho o d. Once the

last iteration is completed, the system reac h the stop criteria and next the last

p ost-pro cessing of the b oundaries, the �nal h yp othesis is obtained.

Fig. 4. The �nal stage of the algorithm c onsists in a p ost-pr o c essing of the short se gment

b oundaries at the �nal of e ach se gmentation. A sliding windows ar e applie d on the

shortest clusters in or der to de cide with mor e ac cur acy the r e al b oundaries

3 Exp erimen ts and results

This section summarizes the results for the ev aluation of the UPC diarization

system. It examines the di�erences b et w een the t w o SAD dep ending systems as

w ell as the impro v emen t ac hiev ed b y the mdm systems compared to the sdm

approac h.

The T able 1 sho ws the p erformance of the SAD mo dule in the di�eren t Ric h

T ranscription Ev aluations conducted in the surrounding of the conference ro om

en vironmen t.
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SAD SVM-based

R T'05 sdm R T'06 sdm R T'07 sdm R T'07 mdm-softsad R T'07 mdm-hardsad

8:03 % 4:88 % 7:03 % 5:39 % 4:72 %

T able 1. SAD error results in the previous R T Ev aluation Conference data condition.

The di�erence b et w een the t w o mdm systems submitted is the SAD b eha vior.

The bias b of the separating h yp erplane, see section 2.3, is c hosen according to

the sp eak er time error and false alarms pro duced in the Non-Sp eec h segmen ts of

dev elopmen t data. The w eigh ting whic h con trols the decision b oundary b et w een

the Sp eec h/Son-Sp eec h classes is c hosen according sp eak er time error and false

alarms of Non-Sp eec h using the NIST R T06s Ev aluation data. That is the same

fashion than the dev elopmen t of the o v erall diarization system. The conference

NIST R T06s ev aluation w as used to p erform all the dev elopmen t exp erimen ts

for the R T07s.

The T ables 2 and 3 sho ws the results obtained b y the UPC implemen tation

in the R T07s. As w e can see, the result from the single distan t condition is

impro v ed in the m ultic hannel approac h. Other in teresting feature is the b eha vior

of the diarization system in function of the SAD p erformance. The system seems

to b eha v e in a similar fashion in spite of the di�erences of the SAD applied.

Ho w ev er, more and accurate exp erimen ts m ust b e done in this line trying to �nd

the tradeo� b et w een the sp eec h false alarms and the diarization p erformance.

Ov erlap SPKR Error, Primary Metric

sdm mdm-softsad mdm-hardsad

27:72 % 22:70 % 22:59 %

T able 2. R T07s Diarization error results of the UPC implemen tation using the Primary

Metric of NIST whic h considers o v erlapping of sp eak er segmen ts

Non-Ov erlap SPKR Error

sdm mdm-softsad mdm-hardsad

25:06 % 19:65 % 19:75 %

T able 3. R T07s Diarization error results of the UPC implemen tation without

considering o v erlapping of sp eak er segmen ts

Finally , in the T able 4 w e can see the R T07s DER p er sho w of the mdm-

softsad system as w ell as some exp erimen ts p erformed after the Ev aluation.

W e can observ e a high v ariance b et w een the DER errors from di�eren t sho ws,

motiv ated b y the di�cult y to tune all the parameters using the R T06s data,

around 4 hours of sp eec h. The mdm-noE system di�ers from the mdm-softsad

only in the n um b er of FF parameters, it uses a v ector size of 28. This system
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do es not use the �rst and last co e�cien ts of the FF. Note that the �rst and the

last co e�cien ts of the FF output of eac h frame con tain absolute energy [20 ], so

they can carry m uc h noise. The last system in the T able, the mdm-no c omplex

do es not implemen ts the mo di�cation of the complexit y algorithm, it means, no

pruning of the small clusters are done.

On the one hand, as w e can note in T able 4, the use of the lateral-band

co e�cien ts p erforms badly in the diarization system and, in o v erall, it is b etter

do not include this features in the sp eak er mo delling. On the other hand, the

pruning of small clusters on the complexit y algorithm signi�can tly a�ects the

diarization error, o v er a 5 % of DER fall do wn b y using the complexit y algorithm

mo di�cation, see T able 4 instead the original one from ICSI. Some exp erimen ts

during the dev elopmen t sho w ed a b est b eha vior of this tec hnique and it could

b e in teresting to �nd the minim um cluster complexit y out to decide the pruning

as a tradeo� b et w een the DER degradation and the run time of the system.

Ov erlap SPKR Error

sho w mdm-softsad mdm-noE mdm-no complex

CMU_20061115-1030 57:58 % 39:68 % 23:51 %
CMU_20061115-1530 11:46 % 12:64 % 15:12 %

EDI_20061113-1500 24:44 % 24:53 % 31 %
EDI_20061114-1500 17:97 % 15:39 % 17:16 %

NIST_20051104-1515 11:16 % 11:39 % 11:23 %
NIST_20060216-1347 5:62 % 11:4 % 10:77 %

VT_20050408-1500 7:13 % 6:9 % 7:44 %
VT_20050425-1000 49:02 % 34:3 % 28:66 %

DER global 22:70 % 19:36 % 17:83 %

T able 4. R T07s Diarization error p er sho w of the ( mdm-softsad ) system. In addition

some exp eriments p osterior to the Evaluation ar e showe d, one of them without using

the �rst and last c o e�cients of the FF and the other one, without the mo di�c ation of

the c omplexity algorithm.

4 Conclusions

In this w ork the authors ha v e presen ted the UPC Diarization system and

the results obtained in the NIST R T07s Diarization Ev aluation on Conference

ro om data. W e ha v e describ ed and implemen tation of an agglomerativ e

clustering approac h based on a soft w are from the ICSI. In addition some

no v elties are in tro duced in the diarization system. A Sp eec h/Non-Sp eec h

detection mo dule based on a Supp ort V ector Mac hine is studied. In the sp eec h

parameterization the using of F requency Filtering co e�cien ts is in tro duced

and minor mo di�cations to the complexit y selection algorithm and a new

p ost-pro cessing tec hnique are tested lo oking for a run time reduction while

main tiaining as m uc h as p ossible the p erformance of the system. The results
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obtained in the R T07s sho w that the �ne tuning of the SAD seems not a�ect

signi�cativily the DER of the global system. In addition, in the mdm approac h,

the DER ac hiev ed outp erforms the results from the sdm algorithm in all sho w

conditions. Therefore, the using of a simple dela y-and-sum algorithm to enhace

the signal aids the system to obtain a b etter clustering. Finally , the main goal

of the UPC ev aluation is ac hiev ed and a diarization system as baseline system

for further dev elopmen t and researc h ha v e b een implemen ted with promising

results.
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